Add to Outlook calendar Add to Google calendar
Title: Quasiconformal maps and open Riemann surfaces
Speaker: Hiroshige Shiga (Tokyo Tech, Japan)
Date: 24 January 2019
Time: 11 am
Venue: LH-1, Mathematics Department

In the theory of Teichm├╝ller space of Riemann surfaces, we consider the set of Riemann surfaces which are quasiconformally equivalent. For topologically finite Riemann surfaces, it is quite easy to examine if they are quasiconformally equivalent or not. On the other hand, for Riemann surfaces of topologically infinite type, the situation is rather complicated. In the first part of my talk, we discuss the quasiconformal equivalence for general open Riemann surfaces and give some geometric conditions for Riemann surfaces to be quasiconformally equivalent. In the second part, we consider the quasiconformal equivalence of Riemann surfaces which are the complements of Cantor sets.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 23 Jun 2024