Add to Outlook calendar Add to Google calendar

Geometry & Topology Seminar

Title: Compactness of the space of singular, minimal hypersurfaces with bounded volume and Jacobi eigenvalue
Speaker: Akashdeep Dey (Princeton University, USA)
Date: 13 August 2019
Time: 10 am
Venue: LH-1, Mathematics Department

Let $\{ M_k \}_{k=1}^{\infty}$ be a sequence of closed, singular, minimal hypersurfaces in a closed Riemannian manifold $(N^{n+1},g), n+1 \geq 3$. Suppose, the volumes of $M_k$ are uniformly bounded from above and the $p$-th Jacobi eigenvalues of $M_k$ are uniformly bounded from below. Then, there exists a closed, singular, minimal hypersurface $M$ in $N$ with the above mentioned volume and eigenvalue bounds such that possibly after passing to a subsequence, $M_k$ weakly converges (in the sense of varifolds) to $M$, possibly with multiplicities. Moreover, the convergence is smooth and graphical over the compact subsets of $reg(M) \setminus Y$ where $Y$ is a finite subset of $reg(M)$ with $|Y|\leq p-1$. This result generalizes the previous results of Sharp and Ambrozio-Carlotto-Sharp in higher dimensions.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 15 Jul 2024