In his 1976 proof of the converse to Herbrand’s theorem, Ribet used Eisenstein-cuspidal congruences to produce unramified degree-$p$ extensions of the $p$-th cyclotomic field when $p$ is an odd prime. After reviewing Ribet’s strategy, we will discuss recent work with Preston Wake in which we apply similar techniques to produce unramified degree-$p$ extensions of $\mathbb{Q}(N^{1/p})$ when $N$ is a prime that is congruent to $-1$ mod $p$. This answers a question posted on Frank Calegari’s blog.