The modularity lifting theorem of Boxer-Calegari-Gee-Pilloni established for the first time the existence of infinitely many modular abelian surfaces $A / \mathbb{Q}$
upto twist with $\text{End}_{\mathbb{C}}(A) = \mathbb{Z}$
. We render this explicit by first finding some abelian surfaces whose associated mod-$p$
representation is residually modular and for which the modularity lifting theorem is applicable, and then transferring modularity in a family of abelian surfaces with fixed $3$
-torsion representation. Let $\rho: G_{\mathbb{Q}} \rightarrow GSp(4,\mathbb{F}_3)$
be a Galois representation with cyclotomic similitude character. Then, the transfer of modularity happens in the moduli space of genus $2$
curves $C$
such that $C$
has a rational Weierstrass point and $\mathrm{Jac}(C)[3] \simeq \rho$
. Using invariant theory, we find explicit parametrization of the universal curve over this space. The talk will feature demos of relevant code in Magma.