We introduce a smoothed version of the equivariant $S$
-truncated
$p$
-adic Artin $L$
-function for one-dimensional admissible $p$
-adic Lie
extensions of number fields. Integrality of this smoothed $p$
-adic
$L$
-function, conjectured by Greenberg, has been verified for pro-$p$
extensions (assuming the Equivariant Iwasawa Main Conjecture) as well as
$p$
-abelian extensions (unconditionally). Integrality in the general case
is also expected to hold, and is the subject of ongoing research.