Add to Outlook calendar Add to Google calendar
Title: A higher dimensional analog of Margulis’ construction of expanders
Speaker: Arghya Mondal (Chennai Mathematical Institute)
Date: 02 December 2022
Time: 11:00 am
Venue: LH-1

Expanders are a family of finite graphs that are sparse but highly connected. The first explicit examples of expanders were quotients of a Cayley graph of a discrete group with Property (T) by finite index subgroups. This was due to Margulis. In recent years, higher dimensional generalizations of expander graphs (family of simplicial complexes of a fixed dimension) have received much attention. I will talk about a generalization of Margulis’ group theoretic construction that replaces expanders by one of its higher analogs.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 13 Jun 2024