We generalize the seminal polynomial partitioning theorems of Guth and Katz (2015) to a set of semi-Pfaffian sets. Specifically, given a set $\Gamma \subseteq \mathbb{R}^n$ of $k$-dimensional semi-Pfaffian sets, where each $\gamma \in \Gamma$ is defined by a fixed number of Pfaffian functions, and each Pfaffian function is in turn defined with respect to a Pfaffian chain $\vec{q}$ of length $r$, for any $D \ge 1$, we prove the existence of a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$ such that each connected component of $\mathbb{R}^n \setminus Z(P)$ intersects at most $\sim \frac{|\Gamma|}{D^{n - k - r}}$ elements of $\Gamma$. Also, under some mild conditions on $\vec{q}$, for any $D \ge 1$, we prove the existence of a Pfaffian function $Pā$ of degree at most $D$ defined with respect to $\vec{q}$, such that each connected component of $\mathbb{R}^n \setminus Z(Pā)$ intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of $\Gamma$. To do so, given a $k$-dimensional semi-Pfaffian set $\gamma \subseteq \mathbb{R}^n$, and a polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree at most $D$, we establish a uniform bound on the number of connected components of $\mathbb{R}^n \setminus Z(P)$ that $\gamma$ intersects; that is, we prove that the number of connected components of $(\mathbb{R}^n \setminus Z(P)) \cap \gamma$ is at most $\sim D^{k+r}$. Finally, as applications, we derive Pfaffian versions of Szemeredi-Trotter-type theorems and also prove bounds on the number of joints between Pfaffian curves.
These results, together with some of my other recent work (e.g., bounding the number of distinct distances on plane Pfaffian curves), are steps in a larger program - pushing discrete geometry into settings where the underlying sets need not be algebraic. I will also discuss this broader viewpoint in the talk. This talk is based on multiple joint works with Saugata Basu, Antonio Lerario, Martin Lotz, Adam Sheffer, and Nicolai Vorobjov.