There are many ways to associate a graph (combinatorial structure) to a commutative ring $R$ with unity. One of the ways is to associate a zero-divisor graph $\Gamma(R)$ to $R$. The vertices of $\Gamma(R)$ are all elements of $R$ and two vertices $x, y \in R$ are adjacent in $\Gamma(R)$ if and only if $xy = 0$. We shall discuss Laplacian of a combinatorial structure $\Gamma(R)$ and show that the representatives of some algebraic invariants are eigenvalues of the Laplacian of $\Gamma(R)$. Moreover, we discuss association of another combinatorial structure (Young diagram) with $R$. Let $m, n \in \mathbb{Z}_{>0}$ be two positive integers. The Young’s partition lattice $L(m,n)$ is defined to be the poset of integer partitions $\mu = (0 \leq \mu_1 \leq \mu_2 \leq \cdots \leq \mu_m \leq n)$. We can visualize the elements of this poset as Young diagrams ordered by inclusion. We conclude this talk with a discussion on Stanley’s conjecture regarding symmetric saturated chain decompositions (SSCD) of $L(m,n)$.