Add to Outlook calendar Add to Google calendar

APRG Seminar

Title: On Hardy Spaces associated with the Twisted Laplacian and sharp estimates for the corresponding Wave Operator
Speaker: Jotsaroop Kaur (IISER Mohali)
Date: 21 June 2024
Time: 3 pm
Venue: LH-1, Mathematics Department

We define atomic Hardy space $H^p_{\mathcal{L}, at}(\mathbb{C}^n), 0<p\leq 1$ for the twisted Laplacian $\mathcal{L}$ and prove its equivalence with the Hardy space defined using the maximal function corresponding to the heat semigroup $e^{-t\mathcal{L}},t>0$. We also prove sharp $L^p, 0<p\leq 1$ estimates for $\left(\mathcal{L}\right)^{-\beta/2}e^{i\sqrt{\mathcal{L}}}$. More precisely we prove that it is a bounded operator on $H^p_{\mathcal{L}, at}(\mathbb{C}^n)$ when $\beta\geq (2n-1)\left(1/p-1/2\right)$.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 15 Jul 2024