Week 1 |
1. |
17/10 |
Introduction; Peano sets |
I 2.1- 2.5 |
|
2. |
19/10 |
The ZFC axioms |
|
|
|
20/10 |
No tutorial this week |
|
HW 1
(solutions) |
3. |
21/10 |
Natural numbers |
|
|
Week 2 |
|
24/10 |
Holiday |
|
|
4. |
26/10 |
Peano addition and multiplication |
|
|
|
27/10 |
Tutorial 1 +
Quiz 1 |
|
HW 2
(solutions) |
5. |
28/10 |
fields, ordered sets & ordered fields |
I 3.2-3.5 |
|
Week 3 |
6. |
31/10 |
$\mathbb R$, bounded sets, supremum and the l.u.b property |
I 3.8-3.9 |
|
7. |
2/11 |
Sequences: definition of convergence, examples |
10.2 |
|
|
3/11 |
Tutorial 2 +
Quiz 2 |
|
HW 3
(solutions) |
8. |
4/11 |
Sequences continued |
10.3-10.4 |
|
Week 4 |
9. |
7/11 |
Series: definition of convergence, examples |
10.5-10.9 |
|
10. |
9/11 |
Series: convergence tests |
10.11-10.12, 10.14-10.16 |
|
10/11 |
|
Tutorial 3 +
Quiz 3 |
|
HW 4
(solutions) |
11. |
11/11 |
Series: absolute convergence, Leibniz's test |
10.17-10.18 |
|
Week 5 |
12. |
14/11 |
Limit of a function, examples |
3.2 |
|
13. |
16/11 |
Basic limit theorems |
3.4-3.6 |
|
|
|
Tutorial 4 +
Quiz 4 |
|
HW 5
(solutions) |
14. |
18/11 |
Continuity: definitions, examples, compositions |
3.3, 3.7-3.8 |
|
Week 6 |
15. |
21/11 |
The intermediate value theorem |
3.10-3.11 |
|
16. |
23/11 |
The extreme value theorem |
3.16 |
|
|
24/11 |
Tutorial 5 +
Quiz 5 |
|
HW 6
(solutions) |
17. |
25/11 |
Derivatives: definition, examples |
4.2-4.4 |
|
Week 7 |
18. |
28/11 |
Algebra of derivatives |
4.5-4.6 |
|
19. |
30/11 |
Invertible functions: monotoncitiy & continuity |
3.12-3.13 |
|
|
1/12 |
Tutorial 6 +
Quiz 6 |
|
No HW will be posted |
|
2/12 |
Review Session |
|
|
Week 8 | 09/12 |
Midterm Examination
(Solutions) |
| |
Week 9 |
20. |
12/12 |
Differentiability of inverse & compositions, inverse trig. functions |
4.10, 6.20-21 |
|
21. |
14/12 |
Local extrema |
4.13-15 |
|
|
15/12 |
Tutorial 7 + No Quiz |
|
HW 7
(solutions) |
23. |
16/12 |
The mean value theorem |
4.13-15 |
|
Week 10 |
23. |
19/12 |
The first derivative test |
4.16-17 |
|
24. |
21/12 |
Higher derivatives, Taylor's theorem |
|
|
|
22/12 |
Tutorial 8 +
Quiz 7 |
|
|
25. |
23/12 |
Derivative: concluding remarks |
|
HW 8
(solutions) |
Week 11 |
26. |
26/12 |
Intervals, partitions, step functions |
1.8-13, 1.15 |
|
27. |
28/12 |
Definition of Riemann integrability |
1.16-17 |
|
25. |
29/12 |
Riemann integrability of monotone functions |
1.21-26 |
HW 9
(solutions) |
|
30/12 |
No class |
|
|
Week 12 |
29. |
02/01 |
Integrability of continuous functions |
3.17-20 |
|
30. |
04/01 |
The first FTOC |
5.1-2 |
|
|
05/01 |
Tutorial 9 +
Quiz 8 |
|
HW 10
(solutions) |
31. |
06/01 |
Primitives; the second FTOC |
5.3 |
|
Week 13 |
32. |
09/01 |
FTOC II continued; integration by substitution |
|
|
33. |
11/01 |
Logarithm & exponentiation |
6.2-3, 6.5, 6.7, 6.12, 6.14-16 |
|
|
12/01 |
Tutorial 10+
Quiz 9 |
|
HW 11 |
34. |
13/01 |
An intro. to linear algebra; vector spaces |
15.2 |
|
Week 14 |
35. |
16/01 |
Examples of vector spaces |
15.3 |
|
36. |
18/01 |
Basic properties of vector spaces; subspaces |
15.4-5 |
|
|
19/01 |
Tutorial 11+
Quiz 10 |
|
|
37. |
20/01 |
Spanning sets |
15.6 |
HW 12 |
Week 14 |
38. |
23/01 |
Linear independence |
15.7 |
|
39. |
25/01 |
Bases |
15.8 |
|
|
26/01 |
No tutorial |
|
HW 13 |
40. |
27/01 |
Dimension |
15.8-9 |
|
Week 15 |
41. |
30/01 |
Linear transformations |
16.1 |
|
42. |
01/02 |
Matrix representations; L(V,W) as a v.s., null and range spaces |
16.10, 16.2-16.5 |
|
|
02/02 |
Tutorial 12+Quiz 11 |
|
HW 13 will be posted |
40. |
03/02 |
|
|
End of classes! |